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Abstract

The next generation of operational weather and climate prediction models of the National
Weather Service is planned to comprise versions of the GFDL FiniteVolume Cubed-Sphere
Dynamical Core (FV3). In order to address the need to accommodate storm-tracking movable
nests during seasons when tropical storms are active, we will be confronted with cases where
the nested grid must pass over the corners of the cubed sphere grid, which are situated at
approximately 35◦ of latitude. Although this latitude is already sufficiently large to make such a
passage relatively rare, and although there is no doubt that the technical challenge of achieving
a smoothly-progressing nest in such a situation will be (indeed, must be) met, a very small
modification to the parent grid, from purely cubic to prolate prismatic, might be an attractive
way to make these occurrences even less frequent. This note presents what seems to be an
elegant way that such a minor modification of the grid might be made without changing two of
its characteristic features: the grid lines will all remain great circles on the sphere; and the grid
cells at the centers of each of the six ‘tiles’ will remain square. The equiangular distribution
of those of the grid lines of the equator-straddling tiles that correspond to lines of constant
longitude is also preserved (the other families of grid lines are no longer perfectly uniformly
spaced in angle). But by nudging the latitudes of the tile corners poleward by even a very small
angle we will fairly dramatically further reduce the frequency at which storm-tracking nests
will need to interact with these corners of the parent grid.

1. Introduction

The cubed-sphere grid geometry, based on gnomonic projections to each of the six faces or
‘tiles’ was first proposed as a framework for global numerical weather simulation by Sadourny
(1972). Much later, as we began to enter the modern era of massively parallel computing,
the idea was independently reconsidered simultaneously by, for example, Ronchi et al. (1996),
Rančić et al. (1996), and McGregor (1996, 1997), as a natural solution to the need to avoid
unnecessary global communications (such as in the Fourier filtering needed at high latitudes of
the longitude and latitude grid framework) if high computational efficiency and scalability were
to be guaranteed in the new computing paradigm.

As the results of comparisons made in the course of the competition amongst models par-
ticipating in the Next Generation Global Prediction System (NGGPS) project, the one chosen
for development as the future operational global model at NCEP was the GFDL’s ‘FV3’ finite-
volume model, a direct descendant of the model formulated by Lin and Rood (1996), Lin (2004)
and reconfigured to an equiangular variant of the gnomonic grid framework by Putman and
Lin (2007). Among the attractive geometrical features of this grid framework, as recognized by
Sadourny, is its inherent simplicity, and the fact that all of the grid lines are great-circles of the
sphere, so that grid-curvature issues never have to be faced. The edges and corners of the cube,
while certainly singularities (in a trivial sense) of the grid, are not singularities of the underlying
coordinates of each tile’s grid. Therefore, it is not too difficult to accurately accomplish the
interpolations necessary to enable solutions on either side of an edge, or on the three sectors



around a corner, to properly match, whether this is done in a global model or on a moveable
nest. Nevertheless, when it comes to presenting the moveable nested grids that we need in order
to track tropical storms, the edges of the nest will ‘kink’ wherever they cross an edge of the
cube. While, with a fixed global parent grid, it is almost inevitable that hurricane nests will
frequently be required to traverse the edges of the cube, it would certainly be desirable not to
have to encounter the even more awkward corner regions of the grid (at about 35◦ of latitude
in the cube, as shown in Fig. 1) any more than is absolutely necessary. In fact, it might be
worth considering a minor modification to the definition of the grid framework, since a very
small nudging poleward of the locations of these corners would most likely reduce, by quite a
dramatic degree, the frequency of such encounters with a mobile storm-tracking nest.

Figure 1. The equiangular gnomonic cubed sphere grid with conventional geographical coordinate lines shown
every 30◦. The corners of the cubic grid occur at around latitudes ±35.26◦.

This note explores a very simple and systematic modification to the equiangular modification
of the gnomonic cubed-sphere grid which corresponds to a grid geometry that is no longer
purely cubic, but is instead derived from the geometry of a slightly prolate (elongated) square
(in cross-section) prism. The grid domains of the two end faces, or polar tiles, of this geometry
remain perfectly square (although reduced in effective area) while the grids of the four equator-
straddling ‘side tiles’ become rectangles elongated in the meridional dimension, rather than
squares, and are thereby slightly increased in size when the number of longitude grid lines is
kept constant. The proposed modification is designed to preserve the characteristic feature that
the grid lines remain great-circles. We also show that this can be accomplished in such a way
that the density of spacing of grid lines in each family remains continuous across the edges of
this new cuboid, just as it was on the original cubed sphere, and, for the family of longitude
grid lines of the side tiles, these lines can also preserve the equiangular spacing property. The
proposed new configuration is obviously slightly less symmetric and would therefore entail a
slightly more general handling of some of the numerics. The grid lines on the polar tiles can no
longer be equally spaced in angles, and neither can the quasi-zonal grid lines of the side tiles.
Also, the edges meeting at the eight corners can no longer do so at equal 120◦ angles; the angle
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becomes a little larger at the side tile corners and compensatingly smaller at the corner of the
polar tile. In other respects, the simplicity of the geometrical configuration of the grid is largely
preserved.

2. Constructing a prolate prism grid with great circles

The distribution of one family of grid lines on the polar tile can be conveniently parame-
terized by the longitude, θ, relative to that of the median grid line of this family, at which this
grid line intersects the edge of the tile. Since we want each grid line to meet its longitude-line
counterpart in the equator-straddling ‘side tile’ on the other side of that edge, we cannot gen-
erally keep the angular distribution of these matched families of grid lines uniform in both the
polar tile and the side tile when the cube is replaced by a prolate square prism in the projective
definitions of the tile edges. But we can at least keep the angular density of the longitude lines
in the side tiles uniform, which is a natural choice. In which case, it is also natural to adopt
the (relative) longitude of the side tile grid lines as an informative label, or ‘index parameter’
attached to the matching family of lines that cover the neighboring polar tile. Each such family
clearly has index parameter θ extending within the range, [−π/4, π/4] with the associated grid
lines marked off at uniform intervals of the index parameter. But the natural measure of the
angular distribution of the lines in the polar tile is not this index variable, θ, but rather it is the
colatitude (as well as the negative of this, to ensure smooth continuity across the entire tile),
which we shall call β, of the midpoint of each grid line there. Only for the special case of an
exact cube does β(θ) = θ; more generally, in the case of a prolate square prism whose polar-tile
edge-midpoints have a colatitude α < π/4, we will find that β 6= θ (except at the central grid
line passing through the pole itself). The relationship is simply:

tan(θ) tan(α) = tan(β). (2.1)

Fig. 2 shows the geometry of the various angles and parameters in our notation.
Although the family of polar tile grid lines parameterized by θ and located by their mid-

point colatitudes, β goes only as far as the tile edge, β = α, the family can be analytically
extrapolated beyond that edge into the neighboring side-tile, whereupon the same lines, getting
now progressively longer as we approach the equator, β = π/2, describe the roughly east-west
aligned grid lines of this side panel. But the label, θ, implied by (2.1), which is used in the
polar panel as an index-parameter does not adequately serve that purpose in the side panel if
we want the density of grid lines to diminish monotonically as they approach the equator and
to attain the same density of the longitude grid lines there (to ensure that grid cells become
square at the equatorial centers of these side tiles). Fig. 3a shows the nonlinear distribution of
θ plotted against β from pole (β = θ = 0 to equator (β = θ = 90◦) in the illustrative example of
extreme prolateness, α = 30◦; Fig. 3b shows the density of the index parameter with respect to
the colatitude β of line-midpoints as a solid curve in the polar tile, and its analytic extension
continuing as the dashed curve into the side tile, where it exhibits an undesirably low implied
resolution. A more desirible form for this density in the side tile is shown by the blue curve,
smoothly preserving the rate of change of density at the transition point, β = α, but curving
to a desirable value of unity at the equator. We rename the index parameter of the east-west
aligned grid lines of the side tile, θ̂, setting its value to zero at the equator, and replacing
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Figure 2. Schematic description of angles and parameters defined for the geometry of the prolate prism grid.

the midpoint colatitudes β and α by the equivalent latitudes, β̂ = π/2 − β and α̂ = π/2 − α,
to simplify some of the algebraic expression. To achieve the desired degree of continuity, we
match the first and second derivatives of θ(β) with the first derivative, and the negative of the
second derivative, of θ̂(β̂) at tile edge, β = α.

It is first helpful to define the function,

q(β) =
1

tan2(α) cos2(β) + sin2(β)
=

1

1 − (1 − tan2(α)) cos2(β)
. (2.2)

so that the profile of θ̂ and its derivatives as a function of β can be set out for the polar tile as
follows.

θ̂(β) = arctan(tan(β)/ tan(α)), (2.3)

dθ̂(β)

dβ
= q(β) tan(α), (2.4)

d2θ̂(β)

dβ2
= −2q2(β) tan(α) cos(β) sin(β)(1 − tan2(α)). (2.5)

We denote the excess density of lines at this edge by h, defined by:

1 + h =
dθ(α)

dβ
≡ dθ̂(α̂)

dβ̂
=

1

sin(2α)
, (2.6)
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Figure 3. For a rather extreme choice of the prolateness angle parameter, α = 30◦, panel (a) shows how the
index parameter, θ, as a function of the colatitude, β, of the midpoints of quasi-zonal grid lines, is in generally
steeper than unity in the polar tile, β < α but becomes relatively shallower in slope when extrapolated into the
side tile. The thin black diagonal line shows the case of the unaltered cube for comparison. The density of grid
lines (i.e., the derivative of the index parameter) is shown more clearly in panel (b), dashed in the extrapolated
region. In order to fit a series of quasi-zonal grid lines in the side panel (β > 30◦, in this case) without their
density dropping below unity, we need an adjusted profile of the density like that shown by the solid blue curve,

which matches both the polar tile’s line density and the derivative of it, at the tile edge, β = α.

and the rate of change of this density of lines across the edge (in the poleward direction) by,

g = −d2θ(α)

dβ2
≡ d2θ̂(α̂)

dβ̂2
=

2 cos(2α)

sin2(2α)
. (2.7)
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In the interior of the side tile, β̂ < α̂, we assume the excess density, dθ̂/dβ̂ − 1, to take a
‘meniscus’, ‘tensioned spline’ (Schweikert, 1966) or flattened catenary shape, rising smoothly
from zero at the equator, β̂ = 0, to the matching conditions (2.6) and (2.7) at the poleward tile
edge, β̂ = α̂. For a suitably chosen constant, φ, this general form is:

dθ̂

dβ̂
= 1 + h

sinh2(φβ̂/α̂)

sinh2(φ)
. (2.8)

Then, since,
d2θ̂

dβ̂2
=

2hφ sinh(φβ̂/α̂) cosh(φβ̂/α̂)

α̂ sinh2(φ)
, (2.9)

implies,

g =
2hφ

α̂ tanh(φ)
, (2.10)

we can find the necessary value of φ by defining a function Φ(z) > 0 implicitly such that z =
tanh(Φ)/Φ, whereupon, if we define

z =
2h

gα̂
, (2.11)

the constant φ we need is obtained as:

φ = Φ(z). (2.12)

(Evaluating the implicit function Φ(z) numerically for the valid range, 0 < z < 1, is guaranteed
and rapid using the standard Newton-Raphson method, when any moderate first guess, say
Φ0 = 1, launches the convergent iterative evaluations of the reciprocal function, 1/z, since this
function is monotonic, convex and has finitely-bounded derivatives.)
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Figure 4. Graphs of side-tile aspect ratio (red curve) and corner latitude (blue curve) as a function of α, the
colatitude of the midpoint of the edge of each polar tile.
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Evaluating θ̂(β̂) simply requires the integration of (2.8), assuming θ̂(0) = 0 for its equatorial
value:

θ̂(β̂) = β̂

(

1 − h

2 sinh2(φ)

)

+
hα̂ sinh(φβ̂/α̂) cosh(φβ̂/α̂)

2φ sinh2(φ)
. (2.13)

Since the longitudinal grid spacing around the equator, ∆s = π/(2N), is intended also to serve
as the latitudinal grid spacing at the center of the side tile, the condition that an integral
number, M , of grid spaces span the meridional extent of the side tile,

θ̂(α̂) =
πM

4N
≡ π

4
A(α̂), (2.14)

can be satisfied by iteratively seeking the appropriate α, and hence α̂, once the suitable degree
of prolateness of the side tiles is chosen via the selected ratio, M : N with M > N .

(b)(a)

Figure 5. The schematic examples of prolate prism modified gnomonic projection grids. (a) A grid with pro-
lateness angle parameter α = 36.2◦, which gives side panels with an aspect ratio of 6 : 5 and latitude γ̂ = 44.0◦

for the grid corners. (b) A grid with prolateness angle, α = 28.4◦, which gives side panels with an aspect ratio
of 7 : 5 and latitude γ̂ = 52.6◦ for the corners.

The motivation behind this whole exercise is to enable the corners of the grid to have their
shared latitude, γ̂, displaced poleward sufficiently to ensure that dynamically still active tropical
cyclones requiring the special scrutiny of a dedicated nested grid much more rarely attain this
latitude. Then at least the awkward presentation of an embedded nest passing over the corner
of the parent grid is, we expect, avoided in all except a tiny minority of synoptically unusual
events. Taking this corner latitude as a function of the prolateness colatitude parameter, α,
and using the relationship:

γ̂(α̂) = π/2 − arctan(
√

2 tan(α)), (2.15)

we can seek the prolateness parameter, α, that is just small enough to render the occurrences
of nest-tracked tropical storms reaching the latitude of the corners acceptably rare. Then we
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can finesse this α so that the aspect ratio,

A(α) =
M

N
, (2.16)

is one of the rational values that lets us construct a complete grid on each side tile. (A
procrustean alternative, of forcing the M grid spaces to define the meridional density of the
quasi-zonal lines filling some given side tile shape, would in general fail to satisfy either of the
two desiderata: the central grid cells of the side tile would not be square; and the continuity of
grid line density passing across the edge with the polar tile would be broken.)

Plotted as functions of the prolateness angle α Fig. 4 shows the corresponding aspect
ratio, A(α), and the corner latitude, γ̂(α). In Table 1 we plot the estimated percentages
of tropical cyclones that, over the last few seasons, have reached the given latitudes. It is
striking how quickly the percentages reaching the higher latitudes diminish. Thus, a relatively
modest nudging of the corner latitudes in the prism grid will go a long way towards reducing
the frequencies of corner-encounters by tropical cyclones. In Fig. 5 we show, using the same
perspective as the cube of Fig. 1, two schematic examples of prolate prism grids. Panel (a)
shows the degree of prolateness required for an aspect ratio in the side tiles of 6 : 5, where the
corner latitude becomes γ̂ = 44.0◦. Panel (b) shows a more extreme example with an aspect
ratio of the side tiles of 7 : 5 and corner latitude γ̂ = 52.6◦.

3. Generalizations

In principle, it is not necessary to treat both hemispheres equally. The prolateness param-
eter, α, essentially dictates the sizes of both the polar tiles equally, but these could actually be
specified separately with a northern parameter, αN and a southern parameter, αS , for example.
The distribution of the quasi-zonal grid lines on the side tiles could still be obtained from a
tensioned spline matched to the separate excesses of line densities, hN and hS , and the rates
of change of these densities, gN and gS with respect to the θ̂ parameter at the northern and
southern polar tile edges. But in this case, the condition required to fix the degree of ‘tension’
in the spline is not that the excess line density vanish at the equator, but that it vanishes at
whatever latitude corresponds to its minimum (an implicit definition, since the location of the
minimum must depend upon the tension itself). Probably the only case of this asymmetrical
type that could have any practical value would be the special case where the prolateness angle
for one hemisphere, say αS is not changed from the standard, αS = π/4, that corresponds to
the original cubic configuration. In this case, the spline has its minimum at this same location,
since then hS = 0 and gS = 0. Thus, the only algebraic modifications we would need to make in
the analysis of the previous section entails replacing α̂ and β̂ by α̃ and β̃ in (2.8), (2.9), (2.10),
(2.11) and (2.13), where,

α̃ = α̂ + π/4, (3.1a)

β̃ = β̂ + π/4. (3.1b)

The newly defined index variable, θ̂, in this case starts at zero at the southern edge of this
latitudinally-asymmetrical side tile, rather than in its center, but in other respects, the formal-
ism is very similar.
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TABLE 1. The estimation of the number/percentage of storms
reaching given latitudes using four years (2013–2016) of best-
track data of numbered tropical cyclones of all affected ocean

basins

North Atlantic basin (AL) — Total number of storms: 96

Reached latitude 30◦ N 35◦ N 40◦ N 45◦ N 50◦ N

Number of storms 41 29 14 5 2

Percentage 42.7% 30.2% 14.6% 5.2% 2.1%

East North Pacific basin (EP) — Total number of storms: 123

Reached latitude 30◦ N 35◦ N 40◦ N 45◦ N 50◦ N

Number of storms 7 1 0 0 0

Percentage 5.7% 0.8% 0.0% 0.0% 0.0%

West North Pacific basin (WP) — Total number of storms: 166

Reached latitude 30◦ N 35◦ N 40◦ N 45◦ N 50◦ N

Number of storms 51 35 16 4 0

Percentage 30.7% 21.1% 9.6% 2.4% 0.0%

Central North Pacific basin (CP) — Total number of storms: 42

Reached latitude 30◦ N 35◦ N 40◦ N 45◦ N 50◦ N

Number of storms 3 2 1 0 0

Percentage 7.1% 4.8% 2.4% 0.0% 0.0%

North Indian Ocean (IO) — Total number of storms: 65

Reached latitude 30◦ N 35◦ N 40◦ N 45◦ N 50◦ N

Number of storms 0 0 0 0 0

Percentage 0.0% 0.0% 0.0% 0.0% 0.0%

Southern Hemisphere (SH) — Total number of storms: 160

Reached latitude 30◦ S 35◦ S 40◦ S 45◦ S 50◦ S

Number of storms 30 10 0 0 0

Percentage 18.8% 6.3% 0.0% 0.0% 0.0%

Global (2013–2016) — Total number of storms: 652

Reached latitude 30◦ N/S 35◦ N/S 40◦ N/S 45◦ N/S 50◦ N/S

Number of storms 132 77 31 9 2

Percentage 20.2% 11.8% 4.8% 1.4% 0.3%

However, it is questionable whether this is the best way of engineering a single end tile (the
northern polar tile in this example) to have enhanced horizontal resolution in a geographical
region of interest. If the aim is to furnish a grid with enhanced resolution for a geographical
focus area of interest (to which we would rotate the grid to relocate the ‘pole’ at the center
of this region), then we might prefer to have the grid in that end tile to retain the gnomonic
cube’s property of possessing an equiangular distribution of grid lines in both directions. This
would mean sacrificing the property of equiangular (rotated) ‘longitudes’ of the side tiles, but
since their role in this kind of application would be to provide peripheral support to the tile of
interest, the price would presumably be acceptable. Although the development of a family of
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alternative stretched gnomonic grids of this kind is beyond the scope of the present note, it is
worth noting that a similar tensioned spline technique (possibly with ‘negative tension’ in some
of the more extreme examples of stretching) can also be employed to formulate them. A future
note may discuss this alternative formulation in more detail.

4. Concluding discussion

We have shown how some of the essential properties of the gnomonic cubic grid can be
preserved in a fairly simple generalization, from cube to prolate square prism, in such a way
that the awkward corners of the grid can be placed slightly closer to the poles. It is important to
emphasize that the geometrical adjustment to the grid proposed here does not remove the need
to address the challenging technical problem of handling a general moveable nest crossing the
corners, since this will still happen occasionally even with corners displaced poleward. However,
the proposed adjustment implies a dramatic decrease in the expected frequency of the instances
where tropical cyclones (and their dedicated nests) need to interact directly with these corner
regions of the parent global grid. Thus, from a cosmetic standpoint, the unsightly deformations
of the hurricane nests as they traverse these corner regions will at least be seen much less often.
The downsides of adopting the proposed adjustment are as follows: the polar tiles will have
a slightly higher (and less uniform) resolution than before; this will impose a slightly more
restrictive time step condition; the meridional resolution in the side tile must also gradually
change with latitude; and the exact three-fold symmetry of the cube’s corner configuration is
broken.

Another family of modifications that could serve to provide a modestly enhanced resolution
to a single end-tile (but not its opposite) is also possible, although we have not examined it
in detail here. It would preserve the exact equiangular property of the grid on the selected
high-resolution tile, but now at the expense of the equiangular arrangement of what, in an
unrotated configuration, would be the longitude lines of the side tile grid. Nevertheless, this
alternative family of modifications could be a better candidate than the conformal Schmidt
(1977) (or ‘Mobius’) transformations, especially since the conformal property of the latter is not
so valued in a grid framework that is, in any case, of the nonorthogonal kind. The preservation
of equiangular great-circle grid line families in the ‘focus’ tile would then be an attractive
property that would greatly simplify the task of introducing further nests there. It is intended
to discuss this alternative option in a future note.
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